
A Knowledge and Component Based
Multimedia Adaptation Framework

Klaus Leopold1, Dietmar Jannach2, and Hermann Hellwagner1
1Department of Information Technology

2Department of Business Informatics and Application Systems
University Klagenfurt, Austria

{klaus.leopold, dietmar.jannach, hermann.hellwagner}@uni-klu.ac.at

Abstract

The rapid evolution in the hardware sector brought up
various (mobile) end user devices like PDAs or cell phones
on which online multimedia content can be consumed. Due
to different capabilities of these devices as well as indi-
vidual user preferences, the original multimedia resources
have to be adapted in order to fit the specific devices’ con-
straints and to meet the users’ requirements. Given the high
variety of possible adaptation operations both on the for-
mat as well as the content level, an intelligent multimedia
server must be able to integrate multiple existing and spe-
cialized adaptation tools.

In this paper, we demonstrate how the usage of mod-
ular software components and declarative descriptions of
component behavior enables us to develop extensible mul-
timedia adaptation systems. The precise semantics of the
utilized functionality description mechanism as well as the
defined vocabulary from existing and emerging multimedia
standards also allows us to automatically assemble adapta-
tion chains that are executed on a given resource involving
multiple, externally provided software components.

1. Introduction

The achievements of the hardware industry have influ-
enced the area of communication and thus, multimedia ac-
cess. Today’s video and music consumption is no longer
bound to special purpose devices like, e.g., analogue TVs
and radios. Digital multimedia can be enjoyed on a vari-
ety of end devices such as regular desktop PCs, notebooks,
web TVs, and even on mobile devices like PDAs and cell
phones. These devices use network connections with differ-
ent characteristics over which they can receive multimedia
content. Some of these connections feature high bandwidth
throughput, others provide only limited bandwidth. Further-

more, the amount and richness of multimedia content - es-
pecially on the Internet - is increasing enormously. The
availability of a variety of multimedia compression stan-
dards enable content providers to easily publish audio and
video clips in addition to standard images and text.

This complex landscape of multimedia content, the di-
verse set of terminal devices with different capabilities, and
heterogeneous networks with dynamically changing condi-
tions, in many cases results in interoperability problems.
Therefore, one major goal in today’s multimedia research
is the development of Universal Multimedia Access (UMA)
capabilities, where a user is enabled to consume any re-
source, anywhere, and anytime [16]. To achieve this goal,
the multimedia content has to be adapted to meet the lim-
itations of a user’s terminal and network. Such multimedia
adaptation could be, e.g., transcoding from one video for-
mat to another or scaling a video in the spatial domain such
that it fits on the terminal’s screen. Furthermore, the content
must also be adapted such that a user has an equivalent, in-
formative experience anytime, anywhere; i.e., the end point
of universal multimedia consumption is the end user and not
the terminal [16]. Universal Multimedia Experience (UME)
might include, e.g., insertion of subtitles into a video to al-
low deaf users to follow the spoken content in a video.

Multimedia adaptation is a key means for addressing
the challenges of UMA. The general idea is to transform
the content before or even during distribution, with session
characteristics like network bandwidth as well as capabili-
ties of the end user’s device being dynamically taken into
account. As there is no single piece of software that sup-
ports the different forms of possible adaptations, we argue
that the only feasible solution for the complex UMA prob-
lem lies in the integration of multiple (third party) software
components into an adaptation framework, which is capa-
ble of applying multiple steps of adaptation methods to a
multimedia resource.

In this paper, we propose a framework for the integration
of multiple isolated adaptation components into a powerful

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

and extensible adaptation system. We base our framework
on declarative descriptions of the components’ capabilities
and effects of the execution of the components’s functions.
Consequently, we are then able to follow a knowledge-
based approach for the computation of general adaptation
plans. Such plans are chains of required transformation
steps on a given multimedia resource to arrive at a desired
format for presentation.

2. Multimedia Adaptation and Universal
Multimedia Access

Multimedia adaptation is becoming increasingly impor-
tant in the context of UMA. We define adaptation as the pro-
cess of producing a variant of a media resource such that it
matches the media consumption context. Such adaptation
processes are typically driven by several forms of standard-
ized meta-data that describe the media contents, terminals,
network connections, client usage environments, as well as
user preferences.

The Role of Meta-data in Adaptation. In MPEG-7
[13], the ISO/IEC standardization group defined power-
ful XML-based mechanisms for describing and annotating
multimedia content as a means for improved management
of the vast amount of available multimedia information. The
aim of MPEG-7 is to be generic, not targeted to a specific
application or application domain. Therefore, the standard-
ized descriptions range from low-level signal characteristics
to high-level semantic information. The most important part
for our work is MPEG-7 media information which contains
information on the content like, for instance, storage for-
mat and encoding format of audio and video.

On the other hand, the MPEG-21 standard aims to
achieve interoperable and transparent access to multime-
dia content. The Digital Item Adaptation (DIA) part of
the standard [20] addresses, among others, the descrip-
tion of the usage environment, in particular, terminal ca-
pabilities as well as characteristics of the network, user,
and natural environment. Within the terminal capabili-
ties, the encoding and decoding features of a terminal are
described, again using the MPEG-7 description mecha-
nism for the media format. Furthermore, input-output ca-
pabilities as well as device properties are described. The
network characteristics describe the conditions and capa-
bilities of a network. Within the user characteristics, usage
and presentation preferences as well as accessibility charac-
teristics and location characteristics are described. The au-
diovisual environment, location, and time are described in
the natural environment characteristics of the usage envi-
ronment.

The different Levels of Multimedia Adaptation.
Adaptation of a multimedia resource can be done on dif-
ferent levels. We identified three main categories of adap-

tation: selecting content, modality conversion, and scal-
ing/transcoding content.

Selecting content: Modern multimedia content is com-
posed of a set of different media objects such as video, au-
dio, text, synthetic scenes, etc. The main objective of con-
tent selection is to choose only parts of a multimedia stream
for user consumption. Consider that a user wants to con-
sume the latest CNN news on a car radio. As typical car
radios do not support video display, the audio/video news
have to be adapted such that only the audio stream is trans-
ferred to the car radio. In order to perform this kind of con-
tent selection, the adaptation algorithm has to be aware of
the individual objects of the multimedia stream. This in-
formation can be expressed with MPEG-7 metadata. But
content selection can also be applied on a higher, seman-
tic level. For example, one might want to neglect transmis-
sion of X-rated scenes. The algorithms can obtain the re-
quired nature of scenes via the marker concept of MPEG-21
[19].

Modality conversion: Modality conversion is the ability
to transform the type (modality) of the media resource. For
example, a video stream may contain important key frames
which are transmitted to a client as still images in case the
device does not support video playout. Metadata mecha-
nisms for modality conversion are currently being defined
in MPEG-21.

Scaling/transcoding content: Scaling or transcoding
multimedia content is done on the signal level of the media
bitstream. For example, MPEG-4 Part 2 has come up with
fine granularity video scalability [17]. The aim of this work
is to provide a video format that can be scaled only by trun-
cating the bitstream. In MPEG-21 Part 13 a wavelet based,
scalable video codec (SVC) is being developed. Both ap-
proaches do not need metadata for adaptation because the
bitstream itself is scalable. Transcoding of multimedia re-
sources is done by (partly) decoding and re-encoding the
multimedia stream. The resource is decoded, new param-
eters for the encoder are set to fulfill terminal and user
constraints and finally, the stream is encoded again. The re-
quired parameter settings for the encoder can be derived by
MPEG-21 usage environment descriptions.

Integration requirements for Adaptation in UMA
The vision of UMA is that any user can consume any mul-
timedia content anytime, anywhere. The multimedia
stream is adapted on a node in a distributed multime-
dia system (e.g., server, intermediate transcoding proxy,
or client) according to standardized metadata that de-
scribe the user’s terminal, preferences, and usage environ-
ment.

Considering the above mentioned adaptation categories,
numerous adaptation algorithms have to be implemented in
an adaptation engine to fulfill the requirements of UMA.

Research work of the past years has produced many ef-

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

ficient adaptation techniques. We can find intelligent
transcoding proxies which are able to transcode a video to
a desired bitrate and which can perform algorithms like,
e.g., greyscaling or spatial frame reduction [18]. In addi-
tion, sophisticated approaches for temporal video adapta-
tion [12], modality conversion [1], and content selection
[19] were developed. However, we think that in a gen-
eral solution to the complex UMA adaptation problem,
the integration of multiple (third party) software compo-
nents into a comprehensive adaptation framework, capable
of applying multiple steps of adaptations to a multime-
dia resource, is required.

In order to be integrateable in such a framework, the re-
quired tools have to be developed as encapsulated adapta-
tion components, following the development principles of
software components: independent and reusable code, well-
defined interfaces, and well-defined behavior.

3. Component Based Software Development

Software Components. The idea of assembling systems
from modular components with defined interfaces and func-
tionality is omnipresent in many industrial sectors. In the
past years, a lot of research work was done in order to ap-
ply that approach also to software development.

The core concept of component based software develop-
ment is a software component which is defined as “an inde-
pendently deliverable set of reusable services” [3].

Reusable services means that a component provides ca-
pabilities that many other components may wish to access.
Thus, the functionality of a component has to be clearly
described. Furthermore, it has to be specified how a com-
ponent affects the system which is using it. A component
can be replaced by another component if both feature the
same functionality and behavior. Thus, well designed com-
ponents are replaceable and encapsulated.

Independently deliverable means that components may
not have structural dependencies among each other, e.g.,
they must not share a common data structure. Note that one
component can depend on another, if both are isolated. For
example, component A is capable of separating the audio
stream from an audio/video file and component B is capable
of decoding an audio stream. According to this, component
B can only decode the content if component A has already
separated the audio content from the audio/video stream.
To realize interoperable components, clear interfaces have
to be defined.

Interfaces. Interfaces specify how a user can interact
with a component. Note that an interface is pure specifi-
cation and does not tell anything about implementation. In
fact, an interface may exist separately from any component
which implements it. As a simple example, suppose an in-
terface specification for a video decoder which is used by a

video player before it renders the images. Different software
companies can develop decoders for the player by strictly
following the interface without touching the player’s code.
Furthermore, a company which is developing video players
can decide which decoder it is using (buying) for the player.
Thus, interfaces open up room for competition among soft-
ware developers.

Behavior Description of Components. The behavior
description is a very crucial part of a component. The goal is
to offer a component’s user a clear picture whether the com-
ponent is useful for him/her or not. Brown and Short pro-
pose that component descriptions may consist of some or
all of the following [3]:

• a list of operation names and signatures defining the in-
put and output parameters for each operation;

• an informal textual description of the component’s
functionality, intended usage scenario, and history;

• an informal description of the component’s operating
context (e.g., hardware platforms, operating system),
expected versions of installed software, and known
limitations or deficiencies;

• performance and availability data for typical execution
of the component.

The need for Multimedia Software Components for
UMA. In order to integrate the various modules, tools, and
software components which are required for the idea of uni-
versal multimedia access, well designed software compo-
nents are necessary. For instance, a company that is working
on semantics driven content selection does not want to mess
around with details of video decoding and encoding which
is probably required at the lowest level. On the other hand, a
company developing video codecs simply wants to see that
content selection is used with their codecs. Thus, a main re-
quirement for complex, integrated multimedia software so-
lutions is the development of exchangeable and encapsu-
lated software components with well defined interfaces and
behavior. Each component has to focus on performing spe-
cific multimedia tasks, like for instance, video decoding, au-
dio encoding, image greyscaling, text to speech conversion,
etc.

Currently, we can find a lot of powerful multimedia li-
braries such as ViTooKi, MPEG4IP, or FFMPEG1, offering
a broad range of multimedia manipulation functionality. For
example, FFMPEG is a library supporting audio/video de-
coding and encoding in numerous formats. Furthermore, it
supports multiplexing and demultiplexing of interlaced au-
dio/video streams (objects). At a first glance, one might
think of FFMPEG as a multimedia software component, de-
signed for solving different multimedia tasks.

1 All projects are available on SourceForge: http://{vitooki, mpeg4ip,
ffmpeg}.sf.net

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

But the problem with FFMPEG and similar tools is that
all the functionality is squeezed into a single library, shar-
ing a lot of common data structures. Such a multi-functional
and therefore heavy-weight library is complicated to deploy
in special-purpose software systems like, for instance, an
audio player, or a video adaptation engine, etc. Even more,
we argue that the challenge of UMA is too complex to be
solved with all-in-one solutions. The integration of multiple
small, encapsulated, and exchangeable multimedia compo-
nents to larger multimedia software systems has to be the
goal of future multimedia software engineering and devel-
opment.

Figure 1 illustrates the idea of multimedia systems based
on single software components. In this example, a CNN
news show is streamed to a PDA and to a car radio. A video
adaptation system and a content selection system is needed
to facilitate UMA. Both systems feature certain multime-
dia manipulation components which are applied on the in-
coming multimedia content. The video adaptation engine
demultiplexes the incoming MPEG-4 video, decodes it, and
applies spatial scaling and grey scaling on every frame. Fi-
nally, it encodes the video again, using an MPEG-2 encoder,
multiplexes the video and audio content, and forwards it to
the PDA. As the video adaptation engine is not capable of
preparing the multimedia content for the car radio, it for-
wards the stream to the content selection system which re-
moves the video objects from the content and forwards it to
the car radio.

4. A Component Based Multimedia Adapta-
tion Framework

In this section, we introduce a component based mul-
timedia adaptation framework like shown in Figure 1. The
main objective of the proposed framework is to shift the em-
phasis from programming multimedia adaptation systems
to composing the required steps from existing components.
In multimedia adaptation systems, the multimedia resource
is typically stored on the server in exactly one defined for-
mat and is transformed according to the client capabilities,
usage environment characteristics, and user preferences be-
fore it is being streamed over the network. Thus, the server
has to apply a set of adaptation components to the origi-
nal stream. Consequently, we developed a knowledge based
adaptation decision taking engine that allows us to compute
adaptation plans for the components. An adaptation plan
contains the required software components and their exe-
cution order. To leave the framework open and extensible,
declarative capability descriptions are used for the plan gen-
eration process. For interoperability reasons, only standard-
ized metadata terms and tags can be used for content, capa-
bilities, and preferences descriptions.

Required Metadata for the Adaptation Framework.
The adaptation engine requires information about the orig-
inal multimedia resource it has to adapt. This is basically
structural information like, e.g., the video’s or audio’s en-
coding format, spatial resolution of the video, color depth,
average bitrate, etc. This information is covered by the
MPEG-7 Media Information tools [8]. Furthermore, the
adaptation engine has to know the target environment where
the multimedia content is rendered like, e.g., terminal capa-
bilities, network and user characteristics, etc. This informa-
tion is obtained from the MPEG-21 Digital Item Adaptation
tools [9]. Finally, the missing piece for our framework is a
description of the software components that actually per-
form the individual adaptation steps. Therefore, we intro-
duce a programming language independent component de-
scription which is expressive enough to capture the seman-
tics of the adaptation components and particularly, the ef-
fects on the whole adaptation process. Furthermore, when a
new adaptation component is assigned to the framework, no
implementation effort has to be spent for integration. It suf-
fices to make a proper component description available for
the system. These descriptions are essential for the adapta-
tion decision taking engine.

Adaptation Decision Taking Engine. The adaptation
decision taking engine is responsible for selecting required
adaptation components from the set of available compo-
nents for the adaptation process. For example, in Figure
1 different content selection components like, e.g., audio-,
video-, news content selection, etc., are available. The con-
tent selection system only picks up the audio selector for the
adaptation process because the others are not needed to ful-
fill the user environment constraints. The output of the deci-
sion taking engine is an adaptation plan. Therefore, in our
framework, we view adaptation as a typical state space plan-
ning problem [2]: A state space planner finds a sequence
of actions for an initial state to reach a goal state. In our
context, actions are adaptation operations contained in soft-
ware components which are applied on the original multi-
media resource to match the terminal capabilities and user
preferences. The start and goal states of the planner are ex-
pressed as logical facts that use MPEG-standardized vocab-
ulary. The actions of a STRIPS-style planner [7] are de-
scribed by a set of preconditions and effects. This form of
representation is simple but expressive enough for various
problem domains and is today also used in the context of Se-
mantic Web Services [14] to describe the semantics of the
services.

In the following example we show how the adaptation
decision taking engine creates an adaptation plan, relying
on the above mentioned descriptions. Note that for the sake
of readability, we use an informal notation for the meta-
data rather than the internal XML representation. Table 1
shows relevant fragments of the content and usage envi-

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

content selection system

audio selection
component

a/v
content

audio

a/v content

a/v content

available components:
a/v demultiplexer, a/v multiplexer,
mpeg-4 video decoder, mpeg-2 video decoder,
mpeg-4 video encoder, mpeg-2 video encoder,
spatial scaler, grey scaler, color depth changer

available components:
video selector, audio selector,
X-rated scenes filter,
political news selector,
sports news selector

video adaptation system

A/V demuxer
component

MPEG-4
decoder comp.

spatial scaler
component

vide o

video
grey scaler
component

video

A/V muxer
component

audio

vi
deo

MPEG-2
encoder comp.

video

Figure 1. Component based UMA

content descr. usage env. descr.

video codec: MPEG-4 video codec: MPEG-2
width: 640 horizontal 320
height: 480 vertical: 240
colordomain: color color capable: false

Table 1. Content and usage environment de-
scriptions

ronment descriptions. It can be seen that the original re-
source is a color video with 640x480 resolution, encoded
using MPEG-4. The usage environment, however, does not
support color display, the maximum resolution is 320x240,
and only the MPEG-2 codec is available for decoding. Thus,
adaptation has to be performed. Note that content descrip-
tion and usage environment description are using different
terms, e.g., width (MPEG-7) vs. horizontal (MPEG-21).

Table 2 shows the component description of a spatial
scaler. The description contains the name of the compo-
nent (e.g., Java class name, C library name, etc.) and a list
of operations (methods, functions). Each operation has an
optional list of parameters, preconditions, and effects. A
parameter consists of a kind (inout or in) which indicates
whether it is a call-by-reference or a call-by-value parame-
ter. Furthermore, a parameter holds a data type, and a name.
We also introduced an anonymous parameter called return
which represents the return type of an operation.

Preconditions and effects describe the semantics of an

component: SpatialScaler
operation: spatialScale

input parameters:
kind type name
in InputStream inFrame
inout OutputStream outFrame
in int oldWidth
in int oldHeight
in int newWidth
in int newHeight
return bool
preconditions:
yuvImage(inFrame)
width(oldWidth)
height(oldHeight)
effects:
yuvImage(outFrame)
width(newWidth)
height(newHeight)
horizontal(newWidth)
vertical(newHeight)

Table 2. Component description

operation and are expressed with logical facts. If all the
preconditions of an operation are fulfilled, the operation is
added to the adaptation plan. Thus, the spatialScale
operation from Table 2 requires a decoded YUV image and
specified width and height to be accepted for the adaptation
plan. Width and height are defined by MPEG-7 con-

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

adaptation plan

decode("http://path/to/res.mp4v", st1)
spatialScale(st1,st2,640,480,320,240)
greyScale(st2, st3)
encode(st3, Codec.MPEG2V)

Table 3. Example adaptation plan

tent descriptions; the fact yuvImage may be defined by
another component like, for instance, a video decoder.

Effects describe the consequences of the operation. One
effect of the mentioned example is that the image has a
new width. Thus, the MPEG-7 descriptor width is up-
dated with the value newWidth. As a consequence, not
only the multimedia resource is adapted but also the meta-
data for the resource. Furthermore, the MPEG-21 descriptor
horizontal is set to newWidth which means that one
goal of the terminal capabilities is fulfilled. Note that, when
using this form of action description, the MPEG-7 descrip-
tors are mapped to MPEG-21 usage environment terms.
Furthermore, when using such a knowledge representation
scheme, the planner does not require changes if new terms
are introduced.

Having all this information, the adaptation deci-
sion taking engine can produce an adaptation plan like
shown in Table 3. In this example, sti is the input (Java
InputStream) as well as the output (OutputStream)
of the adaptation methods. Thus, the decoded video is
the output of the decode method (st1) which is di-
rected to the input of the spatialScale method (st2).
The spatialScale method makes the scaled frame
available at its OutputStream st3 and so forth.

5. Implementation

We have implemented a Java prototype of the proposed
framework. Currently, our adaptation engine is placed di-
rectly on the server node where the multimedia content is
stored. Note that it can easily be shifted to any other node
in the network like, e.g., a proxy server or multimedia gate-
way.

In Section 3, we mentioned that too few “real” multime-
dia adaptation components are available today. To overcome
this issue, we implemented Java wrapper components for
the FFMPEG2 multimedia library. Currently, we have single
components for demultiplexing and multiplexing multime-
dia content. We also support decoding and encoding com-
ponents for a variety of audio and video formats. Further-
more, we wrote wrapper components for the ImageMagick
library3 which are capable of doing still image manipula-

2 FFMPEG is available under http://ffmpeg.sf.net
3 ImageMagick is available under http://www.imagemagick.org

tions such as greyscaling, resizing, rotating, cropping, etc.
These adaptation components are regular Java class files
which are stored somewhere in the classpath of the system.
With the current collection of components, we can perform
multimedia adaptation based on transcoding.

The architecture of our framework is illustrated in Figure
2. One can observe that each multimedia adaptation com-
ponent holds a separate description as outlined in Table 2
which is placed on a defined location in the system. In our
framework, we assume that the multimedia content server
provides a multimedia resource and a proper MPEG-7 de-
scription. Furthermore, the client has to hold an MPEG-21
usage environment description.

If the adaptation engine receives a client request for a
multimedia resource, it first verifies the availability of the
desired resource and then asks the client to send its MPEG-
21 usage environment descriptions. After successful recep-
tion, the adaptation decision taking engine sets up the prob-
lem space for the planner. We are using a light-weight state
space planner, implemented in Prolog [2]. The setup process
of the planner basically translates the different descriptions
to Prolog facts. The MPEG-7 metadata are transformed to
represent the initial state, MPEG-21 usage environment de-
scriptions are converted to facts for the goal state, and the
operations of the components’ capability descriptions are
translated to planning actions.

After successfully set-up of the planning problem, the
adaptation decision taking engine is solving the problem.
To invoke the Prolog planner from the Java code, we are
using the Logic Server API from Amzi4. The result of the
planning process is a textual representation of the adapta-
tion steps that have to be performed on the original multi-
media resource. The decision taking engine then forwards
the resulting adaptation plan to the adaptation engine which
takes over control.

The adaptation engine’s job is to read the original multi-
media resource, apply all adaptation steps from the plan to
the resource, and forward the adapted resource to the client.
Note that the adaptation engine works in streaming fash-
ion, i.e., as soon as the first frames are readily adapted they
are forwarded to the client. This behavior makes the sys-
tem suitable for performing real-time adaptation.

As one of the main objectives of the proposed frame-
work is to minimize implementation effort when new com-
ponents with new functionality are added to the system. In
standard frameworks, specific software interfaces have to be
implemented manually. In our case, the adaptation engine
is aware of the components descriptions, where also the pa-
rameters of all operations are described. Based on this in-
formation, the actual operation invocation is performed by
dynamic class loading.

4 Amzi! web page: http://www.amzi.com

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

Adaptation [Decision Taking] Engine

Adaptation Engine

Adaptation Decision Taking Engine

C
om

po
ne

nt
D

es
cr

ip
tio

n
C

om
po

ne
nt

In
te

rfa
ce

A
da

pt
at

io
n

P
la

n

Terminal

MPEG-21 Terminal Capabilities

...
<Name xml:lang="en">MPEG-4 Video</Name> ...
<DisplayCapability xsi:type="DisplayCapabilityType" colorCapable="false"...
<Resolution horizontal="320" vertical="240" ...
...

Adapted Digital Item

Resource

MPEG-7 Media Information

...
<VisualCoding>
 <Format href="urn:mpeg:mpeg7:cs:VisualCodingFormatCS:2001:"
 colorDomain="grey">
 <Name xml:lang="en">MPEG-1 Video</Name>
 <Frame height="240" width="320".../>
...

Adaptation
Components

Multimedia Content Server

Digital Item

MPEG-7 Media Information

Resource

...
<VisualCoding>
 <Format href="urn:mpeg:mpeg7:cs:VisualCodingFormatCS:2001:"
 colorDomain="color">
 <Name xml:lang="en">MPEG-4 Video</Name>
 <Frame height="320" width="640".../>
...

Figure 2. Architecture

Current Limitations and Possible Improvements.
From the perspective of search complexity, we know that
planning is in general NP-complete. Nevertheless, our ex-
perience shows that the lengths of the required adap-
tation plans are limited to typically five to ten steps.
In our test scenario with a non-optimized implementa-
tion, the search for an adaptation plan takes less than one
second. Note that the time constraints for the plan gener-
ation step are not too hard because the actual transforma-
tion is the time consuming part of the adaptation process.
However, good improvements can be achieved when tech-
niques like plan caching are introduced, where for sim-
ilar client requests already pre-computed plans can be
reused.

Regarding optimization of the adaptation process, how-
ever, the incorporation of additional planning heuristics
must be considered in the future. If, for instance, the di-
mension of a video has to be reduced and greyscaling has
to be performed, it is obviously better to reduce the dimen-
sion first because then the greyscaling component can oper-
ate on a smaller image.

6. Related Work

Describing the capabilities of a software component, i.e.,
its specification, in a formal manner is not new. In the re-
quirements engineering phase, such specifications can for
instance be used to (partially) automate the software reuse
process [21] [6]. In these approaches, the functionality and
behavior of the components of an existing software library

are explicitly described using a formal language like Z [5]
or in terms of, e.g., input-output pairs.

Another field which relies on component description is
component based software engineering (CBSE). CBSE is
targeted at composing applications with plug and play soft-
ware components [15]. Each component is described with
properties and behavior by which it can be controlled and
interact with other components. Based on this description,
new software can be rapidly assembled. ASL (Architec-
ture Specification Language) [4] is a specification language
which includes a behavior specification part based on pre-
and post-conditions for operations, as well as other exten-
sions supporting the description of software architectures.

Our work differs from these approach with respect to
the possibility of automated software construction, i.e., as-
sembly of function calls based on desired behavior and ef-
fects. First, such automation is possible because both the
specification technique based on predicate logic as well as
the allowed terms have a well-defined, precise semantics,
which can be automatically processed. Second, the appli-
cation domain is somehow restricted for a certain class of
problems, whereas the above-mentioned approaches aim at
general software engineering problems.

In general, our approach can also be seen as a step to-
wards intelligent multimedia web services [10]. In particu-
lar, it is related to the promising Semantic Web Service ini-
tiative 5. In [14], for instance, a scenario is sketched, where
an intelligent travel planner uses a set of semantically an-

5 http://www.daml.org/services/

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

notated web services to compose a suitable travel arrange-
ment (hotel reservations, flights etc.). The adaptation prob-
lem described here is in fact a potential real-world applica-
tion of Semantic Web Service technology, as the notational
tools and technologies like OWL-S or WSDL can be di-
rectly used to describe our application problem. Modeling
the functional behavior of tools/services on pre-conditions
and effects is also the standard in the field of Semantic Web
Services. Establishing a shared ontology (i.e., vocabulary,
terms, and semantics) for the application domain is in fact
one of the hardest challenges for successful deployment of
real-world Semantic Web Services. In our context, however,
we have the advantage that such an ontology for the domain
already exists with the help of the MPEG standard docu-
ments.

A similar approach to our work with respect to plan-
ning can be found in [11]. They use a component based
framework in wide area network applications to dynami-
cally adapt to variations in resource availability and client
demand. The realtime selection of components is a crucial
part of this work. Similar to our proposed framework, plan-
ning techniques are used for building adaptation plans.

7. Conclusion

We have presented a framework which is capa-
ble of composing multiple isolated adaptation compo-
nents to build a powerful adaptation system. Our work
is based on semantic description of software compo-
nents which are exploited by a classical state space planner.
Furthermore, we are mapping MPEG-7 and MPEG-21 dec-
larations to logical facts to represent the initial state
and goal state of the planner. This knowledge based ap-
proach enables us to compute adaptation plans inde-
pendent of specific component implementations. Our
work showed that a component based software develop-
ment approach and declarative behavior specifications
are valuable means when developing extensible multime-
dia systems.

References

[1] M. K. Asadi and J.-C. Dufourd. Multimedia Adaptation
by Transmoding in MPEG-21. In 5th International Work-
shop on Image Analysis for Multimedia Interactive Services,
WIAMIS 2004, April 2004.

[2] I. Bratko. Prolog - Programming for Artificial Intelligence.
Addison-Wesley, 3 edition, 2000.

[3] A. W. Brown and K. Short. On components and objects: The
foundations of component-based development. In 5th Inter-
national Symposium on Assessment of Software Tools, June
1997.

[4] D. Bryan. Exactness and Clarity in a Component-Based
Specification Language. In Object-Oriented Behavior Spec-
ification, 1996.

[5] A. Diller. Z: An Introduction To Formal Methods. O’Reilly,
1996.

[6] F. Feiks and D. Hemer. Specification Matching of Object-
oriented Components. In Proceedings of the First Inter-
national Conference on Software Engineering and Formal
Methods (SEFM’03), 2003.

[7] R. E. Fikes and N. J. Nilsson. STRIPS: A new Approach to
the Application of Theorem Proving to Problem Solving. In
Artificial Intelligence, 2, pages 189–208, 1971.

[8] ISO/IEC 15938-5:2003. Information Technology - Multime-
dia Content Description Interface - Part 5: Multimedia De-
scription Schemes. 2003.

[9] ISO/IEC 21000-7:2004. Information Technology - Multime-
dia Framework - Part 7: Digital Item Adaptation. 2004.

[10] D. Jannach, K. Leopold, C. Timmerer, and H. Hellwagner.
Toward Semantic Web Services for Multimedia Adaptation.
Poceedings of the Fifth International Conference on Web In-
formation Systems Engineering, November 2004.

[11] T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained Com-
ponent Deployment in Wide-Area Networks Using AI Plan-
ning Techniques. In Proceedings of the International Par-
allel and Distributed Processing Symposium (IPDPS’03),
2003.

[12] K. Leopold, H. Hellwagner, and M. Kropfberger. QCTVA
- quality controlled temporal video adaptation. Proceedings
of the SPIE International Symposium ITCom 2003 on Inter-
net Multimedia Management Systems IV, 5242, September
2003.

[13] J. M. Martinez. Overview of the MPEG-7 Standard. ISO/IEC
JTC1/SC29/WG11 N4031, March 2001.

[14] S. McIlraith, T. Son, and H. Zeng. Semantic Web Services.
In IEEE Intelligent Systems, Special Issue on the Semantic
Web, Vol. 16(2), pages 46–53, March-April 2001.

[15] J. Q. Ning. Component-Based Software Engineering
(CBSE). In 5th International Symposium on Assessment of
Software Tool (SAST ’97), pages 34–43, 1997.

[16] F. Pereira and I. Burnett. Universal multimedia experiences
for tomorrow. IEEE Signal Processing Magazine, March
2003.

[17] F. Pereira and T. Ebrahimi, editors. The MPEG-4 Book. Pren-
tice Hall PTR, 2002.

[18] P. Schojer, L. Böszörmenyi, H. Hellwagner, B. Penz, and
S. Podlipnig. Architecture of a Quality Based Intelligent
Proxy (QBIX) for MPEG-4 Videos. WWW2003, May 2003.

[19] C. Timmerer, G. Panis, H. Kosch, J. Heuer, H. Hellwagner,
and A. Hutter. Coding format independent multimedia con-
tent adaptation using XML. In Proceedings of SPIE Interna-
tional Symposium ITCom 2003 on Internet Multimedia Man-
agement Systems IV, Vol. 5242, September 2003.

[20] A. Vetro. MPEG-21 Digital Item Adaptation: Enabling Uni-
versal Multimedia Access. In J. R. Smith, editor, IEEE Mul-
tiMedia, pages 84–87, January 2004.

[21] A. M. Zaremski and J. M. Wing. Specification Matching of
Software Components. In ACM Transactions on Software
Engineering and Methodology, 6(4), pages 333–369, 1997.

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

